Following a question from Ricardo Gama (see his comment), I’ve prepared this new tutorial. He wondered if Basemap has a function similar to the track1 function in matlab (you know, that crappy costly thing…)…

Here is what I obtained :

**The goal:**

Plotting great circles with Basemap, but knowing only the longitude, latitude, the azimuth and a distance. Only the origin point is known.

**The process:**

Instead of modifying (for now) the basemap package, I’ve translated a routine I found on the internet. Ed Williams wrote very good scripts for shooting great circles (see his website : http://williams.best.vwh.net/gccalc.htm). Note, I haven’t contacted Ed, so, please note this code is the property of Ed, I’ve just translated the script.

**The process:**

I defined a function call “shoot” that takes longitude, latitude, azimuth and the distance until which the great circle needs to be drawn. The function returns the longitude and latitude of the second point, allowing you to call the regular m.drawgreatcircle()

The only thing to do is to call that function, get the second point’s lon/lat and plot the draw the great circle :

glon1 = 4.360515 glat1 = 50.79747 azimuth = 270. maxdist = 20000 glon2, glat2, backazimuth = shoot(glon1, glat1, azimuth, maxdist) m.drawgreatcircle(glon1, glat1, glon2, glat2,del_s=50,color='red', lw=4.)

Note, with this code, if you input a too long maxdist, the smallest great circle is plotted…

To plot the great circle until you cross the -180/+180° limit, one can set up a function like:

def great(m, startlon, startlat, azimuth,*args, **kwargs): glon1 = startlon glat1 = startlat glon2 = glon1 glat2 = glat1 step = 50 glon2, glat2, baz = shoot(glon1, glat1, azimuth, step) if azimuth-180 >= 0: while glon2 <= startlon: m.drawgreatcircle(glon1, glat1, glon2, glat2,del_s=50,**kwargs) azimuth = baz + 180. glat1, glon1 = (glat2, glon2) glon2, glat2, baz = shoot(glon1, glat1, azimuth, step) elif azimuth-180 < 0: while glon2 >= startlon: m.drawgreatcircle(glon1, glat1, glon2, glat2,del_s=50,**kwargs) azimuth = baz + 180. glat1, glon1 = (glat2, glon2) glon2, glat2, baz = shoot(glon1, glat1, azimuth, step)

for which you only have to provide the starting lat/lon, the starting azimuth. This function expects the basemap (m) as first arg. It will compute the locations along the great circle every “step” distance.

**The code is after this break:**

# # BaseMap example by geophysique.be # tutorial 08 from mpl_toolkits.basemap import Basemap import matplotlib.pyplot as plt import numpy as np ### PARAMETERS FOR MATPLOTLIB : import matplotlib as mpl mpl.rcParams['font.size'] = 10. mpl.rcParams['font.family'] = 'Comic Sans MS' mpl.rcParams['axes.labelsize'] = 8. mpl.rcParams['xtick.labelsize'] = 6. mpl.rcParams['ytick.labelsize'] = 6. def shoot(lon, lat, azimuth, maxdist=None): """Shooter Function Original javascript on http://williams.best.vwh.net/gccalc.htm Translated to python by Thomas Lecocq """ glat1 = lat * np.pi / 180. glon1 = lon * np.pi / 180. s = maxdist / 1.852 faz = azimuth * np.pi / 180. EPS= 0.00000000005 if ((np.abs(np.cos(glat1))<EPS) and not (np.abs(np.sin(faz))<EPS)): alert("Only N-S courses are meaningful, starting at a pole!") a=6378.13/1.852 f=1/298.257223563 r = 1 - f tu = r * np.tan(glat1) sf = np.sin(faz) cf = np.cos(faz) if (cf==0): b=0. else: b=2. * np.arctan2 (tu, cf) cu = 1. / np.sqrt(1 + tu * tu) su = tu * cu sa = cu * sf c2a = 1 - sa * sa x = 1. + np.sqrt(1. + c2a * (1. / (r * r) - 1.)) x = (x - 2.) / x c = 1. - x c = (x * x / 4. + 1.) / c d = (0.375 * x * x - 1.) * x tu = s / (r * a * c) y = tu c = y + 1 while (np.abs (y - c) > EPS): sy = np.sin(y) cy = np.cos(y) cz = np.cos(b + y) e = 2. * cz * cz - 1. c = y x = e * cy y = e + e - 1. y = (((sy * sy * 4. - 3.) * y * cz * d / 6. + x) * d / 4. - cz) * sy * d + tu b = cu * cy * cf - su * sy c = r * np.sqrt(sa * sa + b * b) d = su * cy + cu * sy * cf glat2 = (np.arctan2(d, c) + np.pi) % (2*np.pi) - np.pi c = cu * cy - su * sy * cf x = np.arctan2(sy * sf, c) c = ((-3. * c2a + 4.) * f + 4.) * c2a * f / 16. d = ((e * cy * c + cz) * sy * c + y) * sa glon2 = ((glon1 + x - (1. - c) * d * f + np.pi) % (2*np.pi)) - np.pi baz = (np.arctan2(sa, b) + np.pi) % (2 * np.pi) glon2 *= 180./np.pi glat2 *= 180./np.pi baz *= 180./np.pi return (glon2, glat2, baz) def great(m, startlon, startlat, azimuth,*args, **kwargs): glon1 = startlon glat1 = startlat glon2 = glon1 glat2 = glat1 step = 50 glon2, glat2, baz = shoot(glon1, glat1, azimuth, step) if azimuth-180 >= 0: while glon2 <= startlon: m.drawgreatcircle(glon1, glat1, glon2, glat2,del_s=50,**kwargs) azimuth = baz + 180. glat1, glon1 = (glat2, glon2) glon2, glat2, baz = shoot(glon1, glat1, azimuth, step) elif azimuth-180 < 0: while glon2 >= startlon: m.drawgreatcircle(glon1, glat1, glon2, glat2,del_s=50,**kwargs) azimuth = baz + 180. glat1, glon1 = (glat2, glon2) glon2, glat2, baz = shoot(glon1, glat1, azimuth, step) fig = plt.figure(figsize=(11.7,8.3)) #Custom adjust of the subplots plt.subplots_adjust(left=0.05,right=0.95,top=0.90,bottom=0.05,wspace=0.15,hspace=0.05) ax = plt.subplot(111) #Let's create a basemap of the world m = Basemap(resolution='l') m.drawcountries() m.drawcoastlines() glon1 = 4.360515 glat1 = 50.79747 azimuth = 270. maxdist = 9000 glon2, glat2, baz = shoot(glon1, glat1, azimuth, maxdist) m.drawgreatcircle(glon1, glat1, glon2, glat2,del_s=50,color='red', lw=4.) azimuth = 90. maxdist = 12000 glon2, glat2, baz = shoot(glon1, glat1, azimuth, maxdist) m.drawgreatcircle(glon1, glat1, glon2, glat2,del_s=50,color='blue', lw=4.) azimuth = 225. maxdist = 15000 glon2, glat2, baz = shoot(glon1, glat1, azimuth, maxdist) m.drawgreatcircle(glon1, glat1, glon2, glat2,del_s=50,color='green', lw=4.) startlon = 4.360515 startlat = 50.79747 azimuth = 165. great(m,startlon, startlat, azimuth, color='orange', lw=2.0) great(m,startlon, startlat, azimuth+180., color='orange', lw=2.0) plt.savefig('tutorial08.png',dpi=300) plt.show()

Dear Thomas,

This tutorial is great and very helpful. Thank you.

Best regards,

Ricardo

Hi!

Nice tutorials you have for Basemap.

By the way. I am trying to draw some great circles that cross longitude 180 (or -180, as you want to see it). So my map has the borders at longitudes -220 an -45 and when I try to draw a great circle from west of longitude 180 to west of longitude 180, the great circles are not great circles but strange lines. Any idea of how to fix this?

Thanx!

Juan

sorry I mean from west of longitude -180 to east of longitude -180…